
IJSRSET1622366 | Received : 23 April 2016 | Accepted : 27 April 2016 | March-April 2016 [(2)2: 1072-1076 ]  

 

© 2016 IJSRSET | Volume 2 | Issue 2 | Print ISSN : 2395-1990 | Online ISSN : 2394-4099 
Themed Section:  Engineering and Technology 

 

1072 

 

VRF: A Novel Algorithm for optimized Sorting 
 

Sunny Sharma1, Vinay Kumar2, Prithvipal Singh3, Amritpal Singh4   
 

1,3,4 
Department of Computer Science, Guru Nanak Dev University, Amritsar, Punjab, India 

2 
Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar, Punjab, India 

 

ABSTRACT 
 

An algorithm is a well-defined way that takes some input in the form of certain values, processes them and gives 

certain values as output. Although there is a large variety of sorting algorithms, sorting problem has appealed a great 

deal of research; because effective sorting is important to enhance the use of other algorithms.A novel sorting 

algorithm namely „V-Re-Fr (VRF) Sorting Algorithm‟ is proposed to address the limitations of the current popular 

sorting algorithms. The goal of this paper is to propose a new algorithm which will provide improved functionality 

and reduce algorithm complexities. The observations backed by literature survey indicates that proposed algorithm 

is much more efficient in terms of number of swaps or iterations than the other algorithms having O(n2) complexity, 

like insertion, selection and bubble sort algorithms. 

Keywords: V-Re-Fr (VRF), Sorting, algorithms, selection sort, swaps, time complexity 

 

I. INTRODUCTION 

 

Algorithms have a crucial role in resolving the 

computational difficulties. It is a tool to solve the 

computational problems [1]. Here we discuss about the 

various sorting algorithms. In the event of sorting, it will 

be required to organize an arrangement of numbers 

under a provided order. The formal meaning of the 

sorting issue is as per the following: 

 

Input: A sequence having n numbers in some random 

order (b1, b2, b3, …., bn) 

Output: A permutation (b‟1, b‟2, b‟3, … , b‟n) of the 

input sequence such that b‟1 ≤ b‟2 ≤ b‟3 ≤ ….. b‟n. 

 

For instance, if the given input of numbers is (43, 41, 92, 

32, 17, 75), then the output sequence returned by a 

sorting algorithm will be (17, 32, 41, 43, 75, 92). In 

practical, some records in the data which are to be sorted 

according to their keys. An n records sequence (R1, 

R2,..., Rn), whose corresponding sequence of keywords 

is (KEY1, KEY2,...,KEYn) is required to be sorted to 

identify a permutation Per1, Per2,..., Pern of the current 

subscript sequence 1,2,...,n, so that the appropriate 

keywords meet the decreasing or increasing relationship, 

that is (KPer1≤ KPer2 ≤... ≤ KPern) in order to get an 

ordered record sequence by their keywords. Such 

process is known as sorting
 
[3]. 

 

 

Figure 1:  Flow of Algorithms 

Large numbers of sorting algorithms are available at our 

disposal. Out of these available algorithms, which one is 

considered as the best one for a particular application 

further has its dependency on various other factors 

which include: 

 

 The span of the sequence to be sorted. 

 The degree up to which the given info grouping is    

now sorted. 

 The probable restrictions on the data values. 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 

1073 

 The framework engineering on which the sorting 

operation will be performed. 

 The kind of capacity gadgets to be utilized: primary 

memory or disks [2]. 

 The investigation of algorithm characterizes that the 

estimation of resources required for an algorithm to 

tackle an issue. Running time and space required are of 

primary concern for the aim that algorithms that needed 

a short or long time to solve a problem [14]. Finding an 

appropriate algorithm for an exact problem there is need 

to analyse numerous potential algorithms. Figure 1 

represents one of the ways to recognize the finest 

suitable algorithm for a mentioned problem is to deploy 

both algorithms and find out their running time and 

space needed for executing a program.  

 

In the event that the observed running time coordinates 

that anticipated running time of the examination 

furthermore beat the other calculation that would be the 

best appropriate calculation for the given issue. Different 

components influence the running time of a program in 

which the measure of information is the essential 

concern. Also, the greater part of the fundamental 

algorithm performs extremely well in little exhibits and 

sets aside more time for greater size. 

 

The association of this proposal paper is as follows. In 

Section 2 (Literature Work), the work associated with 

sorting algorithms was studied. In Section 3 (Existing 

Algorithms), some existing sorting algorithms were 

explored. In Section 4 (Proposed Algorithms), a sorting 

algorithm is proposed and in Section 5 (Conclusion) 

there are some concluding explanations. 

 

II. METHODS AND MATERIAL 

 
1. Related Work 

Khalid Suleiman Al-Kharabsheh [5][13] et al suggested  

a GCS (Grouping Comparison Sorting) algorithm which 

makes further comparison with others conventional 

sorting algorithms like Bubble sort, Merge sort, 

Insertion sort, Quick sort and Selection sort, to show 

how these algorithms reduce time of execution.  

 

Saleh Abdel-hafeezl [6] et al proposed a hardware based 

comparison-free sorting algorithm which controls 

Hamming memory (SRAM) for storing data elements in 

a serial shift buffer and using (ANDING) operation of 

matrix multiplication between memory and the buffer 

produces sorted N elements in 2N cycles of clock. 

 

Ashok Kumar Karunanithi [7] presented a review on 

sorting algorithms and makes comparison on three 

critical aspects related to efficiency such as memory, 

number of swaps and running time used for sorting 

algorithms. It takes into consideration various 

performance behavior like linear class or non-

comparison class (Radix, Bucket ,Counting Sort) and 

O(n log n) class (Quick Sort) and O(n
2
) class (Selection, 

Insertion). 

 

Susumu Horiguchi [8] et al   proposed a table-lookup 

sorting approach namely; Noisy sort for memory 

intensive calculations. For special data classes, it 

develops high parallel method for approximation in 

sorting by using associative memory. 

 

V.P.Kulalvaimozhi [9] et al deals to analyze various 

sorting algorithms to calculate their performance 

analysis and for sorting list of data elements, it analyze 

problem type like large, small numbers and then 

compare all algorithms according to their performance.   

 

2. Existing Sorting Algorithms 

A.  Bubble Sort 

Bubble Sort is a simple sorting algorithm that 

repetitively steps through the list to be sorted matches 

each pair of adjacent items and swaps them if they are in 

the wrong order. The pass through the list is repeated 

until no swaps are needed, which indicates that the list is 

sorted.  

 

„A‟ as an array with N elements in the bubble sort 

algorithm is as follows [4][10]: 

 

Algorithm: BUBBLE (A, N) 

 

         Repeat Steps II and III for R=1 to N-1 

         Set C = 1 

         Repeat while C<= N-R 

  If A[C] >A[C+1], then 

  Swap A[C] and A[C+1] 

  Set C = C+1 

          Exit. 

 

https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Swap_(computer_science)


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 

1074 

B. Insertion Sort 

 

Insertion sort repeats, consuming one input element each 

repetition, and growing a sorted output list. Every cycle, 

insertion sort expels one element from the input 

information, finds the location inside the sorted list, and 

add it there. . It repeats until no input elements remain. 

„A‟ as an array with N elements in the insertion sort 

algorithm is as follows
 
[4][11]: 

 

Algorithm: INSERTION (A, N) 

 

         Set A[0] = -∞ 

         Repeat Steps III to V for R = 2 to N 

         Set TMP = A[R] and C = R-1 

         Repeat while TMP <A[C] 

                 Set A[C+1] = A[C] 

                 Set C =C – 1 

        Set A[C+1] = TMP 

       Exit. 

 

C. Selection Sort 

Selection sort is an algorithm used for sorting, also 

called as an in-place comparison sort. Time complexity 

of this algorithm is O(n
2
). It starts by finding the 

smallest or largest element and swapping that element 

with the leftmost unsorted element and placed it in 

ordered list. „A‟ as an array with N elements in the 

selection sort algorithm is as follows [4][12]: 

 

Algorithm: SELECTION SORT (A, N) 

 

      Repeat Steps II & III for R=1 to N-1 

      Set MIN = A[R] and POS = R 

      Repeat for C= R+1 to N 

      If MIN >A[C] then 

                  MIN= A [C] 

                  POS = A [C] 

                  POS = C 

      Set TMP = A[R] 

      A [R] = A[POS] 

      A[POS] = TMP 

      Exit 

 

 

 

 

 

III. RESULTS AND DISCUSSION 

 

Proposed Sorting Algorithm 

 

V-RE-FR (VRF) Sort 

 

There have been several authors who had made regular 

efforts for improving the effectiveness of the sorting 

method. There is a novel algorithm named as friends sort 

algorithm and OSSA
[2]

 which are based on the selection 

sort. The proposed algorithm is based on bubble sort as 

its method in the second step of the operation is 

somewhat, similar to the bubble sort. 

 

Figure 2, the proposed algorithm works in two steps: 

 

1) In first step, the first and the last element of the 

array is compared. If the first element is larger than 

the last element, then exchange of the elements is 

required. The position of the element from front end 

and element from the rear end of the array are stored 

in variables which are increased (front end) and 

decreased (rear end) as the algorithm progresses. 

 

2) In the second step, two adjacent elements from the 

front and rear end of the array are taken and are 

compared. Swapping of elements is done if required 

according to the order 4 variables are taken which 

stores the position of two front elements and two 

rear elements to be sorted. 

 

 

Figure 2:  Working Example of VRF Sort 

Algorithm: VRF(A, N) 

R, C, N, TMP, FLAG←1, R←1, C←N 

while(R<C) 

https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Comparison_sort


International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 

1075 

{ 

if(A[R]>A[C]) 

{ 

      TMP←A[R] 

      A[R]←A[C] 

      A[C]←TMP 

} 

R←R+1 

C←C-1 

} 

for (R←1 to N/2 && FLAG) 

{ 

     FLAG←0 

     for (C←R to N-R) 

    { 

if(A[C]>A[C+1]) 

{ 

      TMP←A[C] 

      A[C]←A[C+1] 

      A[C+1]←TMP 

      FLAG←1 

} 

if(A[N-C]>A[N-C+1]) 

{ 

      TMP←A[N-C] 

A[N-C]←A[N-C+1] 

A[N-C+1]←TMP 

      FLAG←1 

} 

      } 

} 

IV. CONCLUSION 

 
An algorithm is a group of instruction which takes input 

from user, executes them and gives output to user. 

Sorting is an essential operation in IT field that arrange 

elements either in descending or ascending order. In the 

proposal , a novel sorting algorithm is presented namely  

VRF sorting algorithm and it was analytically compared  

with others sorting algorithms like selection, insertion 

and bubble sort which have O(n
2
) complexity and 

indicate better and somewhere similar complexity as the 

other sorting algorithms. As per the literature study it 

can be concluded that proposed algorithm will show 

improvements in terms of number of swaps or iterations 

as compared to other sorting algorithm and it will act as 

a catalyst to develop and analyse other problem specific 

algorithms. 

 In future this algorithm can be implemented and tested 

for its potency in a variety of application domains. 

Further improvements can be made keeping in view the 

application specific nature of algorithms. 

 

V. REFERENCES 

 
[1] Ellis Horowitz, Sartaj Sahni, Sanguthevar 

Rajasekaran, “Fundamentals Of Computer 

Algorithms”, Second Ed. USA, 2008. 

[2] Sultanullah Jadoon, Salman Faiz Solehria, Prof. 

Dr. Salim ur Rehman, and Prof. Hamid Jan, 

“Design and Analysis of Optimized Selection Sort 

Algorithm”, International Journal of Electric & 

Computer Sciences (IJECS-IJENS), Vol. 11, No. 

01,February 2011. 

[3] Charles E. Leiserson, Thomas H. Cormen, Ronald 

L. Rivest, Clifford Stein, “Introduction To 

Algorithms”, 3rd Ed. MIT Press, p.5-7, 147-150, 

2009. 

[4] Seymour Lpischutz, G A Vijayalakshmi Pai, 

“Data Structures”, 3rd Ed., Tata McGraw-Hill  

Publishing Company Limited, p.4.11, 9.6, 9.8, 

2006. 

[5] Khalid Suleiman Al-Kharabsheh, Ibrahim 

Mahmoud AlTurani, Abdallah Mahmoud Ibrahim 

AlTurani, and Nabeel Imhammed Zanoon, 

“Review on Sorting Algorithms A Comparative 

Study”, International Journal of Computer Science 

and Security (IJCSS), Vol. 7, No. 3, 2013. 

[6] Saleh Abdel-hafeez, and Ann Gordon-Ross, “A 

Comparison-Free Sorting Algorithm”, IEEE 

International SoC Design Conference (ISOCC), 

pp. 214-215, 2014. 

[7] Ashok Kumar Karunanithi, “A Survey, Discussion 

and Comparison of Sorting Algorithms”, 

Department of Computing Science, Umea 

University, June 2014. 

[8] Susumu Horiguchi, and Willard L. Miranker, 

“Noisy Sort, A Memory-Intensive Sorting 

Algorithm”, Elsevier Science Publishing Co., Inc, 

pp. 641-658, 1989. 

[9] V.P.Kulalvaimozhi, M.Muthulakshmi, 

R.Mariselvi, G.Santhana Devi, C.Rajalakshmi, 

and C. Durai, “ Performance Analysis Of Sorting 

Algorithm”, International Journal of Computer 

Science and Mobile Computing (IJCSMC), Vol. 4, 

No. 1, pg.291 – 306, January 2015. 

 



International Journal of Scientific Research in Science, Engineering and Technology (ijsrset.com) 

 

 

1076 

[10] Anthony LaMarca, and Richard E. Ladner, “The 

Influence of Caches on the Performance of 

Sorting”, Proceedings of the Eighth Annual ACM-

SIAM Symposium on Discrete Algorithms,. pp. 

370–379, January1997. 

[11] C.Cook, and D.Kim, “Best sorting algorithm for 

nearly sorted lists", Commun. ACM, pp.620-624. 

[12] Deepak Garg, “Selection O. Best Sorting 

Algorithm”, International Journal of Intelligent 

Information Processing, pp.363-368. 

[13] I. trini, k. kharabsheh, and A. trini, "Grouping 

Comparison Sort", Australian Journal of Basic and 

Applied Sciences, pp. 221-228, May 2016. 

[14] Kronrod, M. A., "Optimal ordering algorithm 

without operational field",Soviet Mathematics – 

Doklady, pp. 744, 1969. 


